

San Diego CIREN Center

Rollover crash research:

Anatomy of a Rollover

Principal Investigators

David B. Hoyt, MD, FACS, UCSD Medical Center

A. Brent Eastman, MD, FACS, Scripps Memorial Hospital, La Jolla

San Diego County Trauma System

Children's Hospital & Health Center, SD
Palomar Medical Center
Scripps Memorial Hospital
Scripps Mercy Hospital
Sharp Memorial Hospital
University of California, San Diego Medical Center
County of San Diego, Emergency Medical Services

Today's Presenters

- David B. Hoyt, MD, FACS, UCSD Medical Center
- Steve Erwin, Crash Investigator, San Diego CIREN

Contributors:

Carol Conroy, MPH, PhD
Sharon Pacyna, RN, BSN, MPH
Barbara Frasier, Administrative Assistant

Today's Presentation

Rollover Review

- Steering Maneuvers as Causation
- CIREN Rollover Frequency, Injury, & Source

- Roof Crush Dynamics
- San Diego Rollover Analysis

Rollovers

- Almost 215,000 passenger vehicles are in tow-away rollovers every year (CDS, NASS Data)
- Rate of serious injury is 36% higher than in collisions with no rollover
 - These rollover statistics include ejections
- 3-4% of all crashes are rollovers, but 20% of all fatal crashes involve rollovers
- About 2/3 of rollover deaths involve occupant ejection

What IS a "Rollover"?

At least one quarter over-turn (90-degrees) from the horizontal axis

CDS/NASS Rollover Initiation Types

•	Trip-over	(lateral slide	interuptus)
---	-----------	----------------	-------------

69.4%

Collision with other vehicle and

then rollover	14.5%
• Flip-over (up and back down same side)	7.0%
Bounce-over (Rebound off object)	5.7%
• Climb-over (climb up and over)	1.1%
• Turn-over (lateral slide sway)	1.1%
• End-over-end (launch)	1.0%
• Fall-over (gravity)	0.9%
Other initiation type	0.3%

CIREN Statistics Used in this Presentation

- Include "Pure" rollovers (27)
 - rollovers without another significant impact,
 prior or subsequent to roll
- Exclude
 - end over end rollovers

Initiation for CIREN "Pure" Rollover Cases (denominator = 27)

- 24 coded as trip-over (89%)
- 1 fall-over
- 1 flip-over
- 1 undetermined

Number of quarter turns for pure rollovers, CIREN

Rollover Tests vs. Real World Crashes

Sled & Test (11 Quarter-turns)

1994 FORD EXPLORER INFLATABLE TUBULAR STRUCTURE EVALUATION 30 MPH ROLLOVER CRASH

Same side roof rail landing

Rollover tests – tipping down a slope or launching from a tilted platform

Sawtooth motion of vehicle CG in 'lateral' roll

- In most cases, the rebound speed reaches that of the impact speed.
- The largest change in vertical velocity occurs when the underside of the vehicle is in contact with the ground, at the start and at the end of a full roll.

Post trip, typical horizontal velocity = 11m/s (40kmph) @ trip (pass. car)

The "skipping stone"

Average roll rates:

Single roll = 2.3 sec's, double roll = 1.5 per rev.

Multiple (3+) = 1.1 per rev.

Average for 1 or more = 1.7 sec's

Pre-Crash: Over-correction steering

 9 out of 27 "pure" CIREN R/O's were a result of overcorrection steering

Most common reason is a single over-steering correction

• 2nd most common is double over-correction steering (i.e., re-turn to roadway, exit opposite side, lane..etc).

 Over-correction yaw off of the roadway is achieved much easier than on the roadway due to the coefficient of friction

Right rib fractures 7-11 with small nneumothorax

Driver - Open right parietal skull fracture

RF passenger - Right frontotemporal EDH and temporal skull fracture

De-Beading

Of the 24 Trip-overs:

- 18 suspected of tire de-beading as a factor
- 7 not suspected as a factor
- 2 unknown

'Bead'; Steel cord molded into lip(s) of tire fits into rim, makes seal when inflated

Direction of lateral slide

Resistance due to friction 'De-beading'

Rim gouges surfaçe

– rim →

Air

Over-steering Questions

 Will Electronic Stability Control Systems help mitigate rollovers due to over-steering?

(none of the these CIREN R/O's had ESC)

 Can de-beading be mitigated with better wheel design?

Will Public Education help?

 CIREN Injuries, Sources, Intrusions in "Pure" Rollover Cases

Injured Body Region for Pure // Rollovers, CIREN

Intruding Components for Pure Rollovers, CIREN

Injury Sources for Pure Rollovers, CIREN

Kinematics

Left lateral roll – sled test

1994 FORD EXPLORER
FMVSS 208 ROLLOVER
TEST 48.3KPH
UNBELTED DRIVER AND
BELTED PASSENGER

What about Roof Crush??

Two Schools of Thought

Roof crush directly related to injuries (FMVSS 216 should be strengthened)

 Roof crush is not causally linked to injuries – rather it is dependent on kinematics

NO SIGNIFICANT HEAD INJURY: Left rib fractures 7 -10 @ costotransverse junction, Splenic laceration, Grade 3

- Driver 24 y/o male
- Lap & shoulder belt
 - (no pre-10, not integrated)
- Left Trip-over
- 10 ½-turn
- 1999 Ford Ranger
 XLT
- 40 cm M/C @ left roof
- 2 greenhouse impacts

NO SIGNIFICANT HEAD INJURY: Left forehead abrasions Left proximal humerus fracture

- RF passenger, 25 yo female
- Lap/shoulder belt used
 - (no pretensioner, not integrated)
- Right Roll
- 8 quarter-turn fall-over
- 1999 Chevrolet S-10 pick-up
- 50 cm max crush
- 2 greenhouse impacts

Roof Crush + Rollover Dynamics

- Lateral (predominately) overturning (roof rail to roof rail, roof crush less likely)
- 'Corkscrew' overturning

(with a forward momentum, roof crush more pervasive due to A-pillar involvement)

Launch/Vault

(freefall, roof strength critical)

Trip-over (lateral)

Right side leading 8 quarter-turns 1st landing top left roof rail 12 cms max. crush Velocity @ trip 21mph

vehicle ta 4Runner lity vehicle

Fall-over (launch/vault)

2 quarter-turns M/C 55cms Top-BL

tean lenif

Current San Diego Rollover Research

Rollover crashes: Predicting serious injury based on occupant, vehicle, and crash characteristics

In press: Accident Analysis and Prevention

Rollover research methods

- Pure rollover crashes in CIREN and CDS, NASS were identified
 - No significant impacts before or after rollover
 - Complete ejections excluded
 - End-over-end rollovers excluded
- Compared 27 seriously injured (MAIS 3-5) CIREN occupants to 606 CDS, NASS less seriously injured occupants (MAIS 0-2)
- Occupant, vehicle, and rollover characteristics associated with serious injury were evaluated

Demographic characteristics of seriously injured CIREN occupants (MAIS 3-5) and less seriously injured CDS, NASS (MAIS 0-2)

- Age
 - 20-49 years: 70% for seriously injured CIREN occupants and 57% for less seriously injured CDS, NASS occupants
- 56% male seriously injured CIREN occupants and 59% male less seriously injured CDS, NASS occupants
- Mean occupant height: 168.1 cm for seriously injured CIREN occupants and 172.2 cm for less seriously injured CDS, NASS occupants
- 74% of seriously injured CIREN occupants were driving compared to 71% of less seriously injured CDS, NASS occupants
- 46% of seriously injured CIREN occupants were in vehicles with other occupants compared to 59% of less seriously injured CDS, NASS occupants

Vehicle characteristics comparing seriously injured CIREN occupants (MAIS 3-5) and less seriously injured CDS, NASS occupants (MAIS 0-2)

- Vehicle curb weight
 - Medium (1,134 1,542 kg): 46% for seriously injured CIREN occupants and 51% for less seriously injured CDS, NASS occupants
- All seriously injured CIREN occupants were in vehicles meeting current roof crush standard compared to 88% of less seriously injured CDS, NASS occupant vehicles
- Vehicle plane with greatest deformation
 - Top: 77% for seriously injured CIREN occupants and 81% for less seriously injured CDS, NASS occupants
- Vehicle body type
 - Passenger automobiles: 39% for seriously injured CIREN occupants and 45% for less seriously injured CDS, NASS occupants

Rollover crash characteristics of seriously injured CIREN occupants (MAIS 3-5) and less seriously injured CDS, NASS occupants (MAIS 0-2)

- Initiation type
 - Trip overs: 70% for seriously injured CIREN occupants and 74% for less seriously injured CDS, NASS occupants
- Rollover location
 - Roadside or median accounted for 62% for seriously injured CIREN occupants and 71% for less seriously injured CDS, NASS occupants
- Far side rollovers
 - 59% for seriously injured CIREN occupants and 52% for less seriously injured CDS, NASS occupants
- Roof vs. wheel landing
 - Roof: 48% for seriously injured CIREN occupants and 47% for less seriously injured CDS, NASS occupants
 - Wheels: 41% for seriously injured CIREN occupants and 32% for less seriously injured CDS, NASS occupants

Injury sources and intrusion comparing seriously injured CIREN cases (MAIS 3-5) and CDS, NASS less seriously injured occupants (MAIS 0-2)

- Roof was 3 times more likely to be injury source for seriously injured CIREN occupants compared to less seriously injured CDS, NASS occupants
- Side interior (A, B pillars, armrest, interior door, hardware) was almost 5 times more likely to be injury source for seriously injured CIREN occupants compared to less seriously injured CDS, NASS occupants
- Seriously injured CIREN occupants were 4 times more likely to have intrusion at their seat position compared to less seriously injured CDS, NASS occupants
- Seriously injured CIREN occupants were twice more likely to have roof rail/B pillar intrusion compared to less seriously injured CDS, NASS occupants

Additional Research Required

- What are the roles of Electronic Stability Control Systems and Vehicle Ride Height?
- What is the role of belts in relation to occupant kinematics and rollover dynamics?
- Can de-beading be mitigated with better wheel design?
- Analysis of rollovers, though not an initial CIREN target, will allow CIREN teams to better understand complex crash dynamics and ultimately vehicle safety improvement